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Immunotherapy is now advancing at remarkable pace for tumors located in various 
tissues, including the brain. Strategies launched decades ago, such as tumor antigen-
specific therapeutic vaccines and adoptive transfer of tumor-infiltrating lymphocytes are 
being complemented by molecular engineering approaches allowing the development 
of tumor-specific TCR transgenic and chimeric antigen receptor T cells. In addition, the 
spectacular results obtained in the last years with immune checkpoint inhibitors are 
transfiguring immunotherapy, these agents being used both as single molecules, but 
also in combination with other immunotherapeutic modalities. Implementation of these 
various strategies is ongoing for more and more malignancies, including tumors located 
in the brain, raising the question of the immunological particularities of this site. This may 
necessitate cautious selection of tumor antigens, minimizing the immunosuppressive 
environment and promoting efficient T cell trafficking to the tumor. Once these aspects 
are taken into account, we might efficiently design immunotherapy for patients suffering 
from tumors located in the brain, with beneficial clinical outcome.
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The immune system, thanks to its power and specificity, has extraordinary potential to achieve 
long-lasting tumor remissions, with no side effects on normal tissues. Manipulating the immune 
system to achieve such a goal is the objective of cancer immunotherapy, which has been under 
intense investigation for more than 20 years, with some successes, but also room for improvement. 
In particular, T cell immunotherapy aims to generate, in vivo or in vitro, efficient tumor-specific 
T cells able to reach the tumor microenvironment and provide long-term antitumor function. 
This approach comes with many complexities, namely the choice of a tumor antigen, the source of 
tumor-specific T cells, the need to elicit strong immune responses, and to target the immunosup-
pressive tumor microenvironment. Immunotherapy has been developed for many malignancies, 
which now includes tumors in the brain. Decades of research have helped understanding the 
fundamentals of immune responses to tumors and showed that tumor-specific immune responses 
were able to occur, but were limited by the mechanism of tumor immunoediting (1). These studies 
also revealed that antitumor immune responses were able to occur in the brain, following similar 
rules to those applying to peripheral organs (2). However, the brain, as an immune specialized site, 
is endowed with additional hurdles to overcome before efficient immunotherapy can be achieved. 
Here, the means and requirements for successful immunotherapy will be identified and potential 
additional requisites for efficient immunotherapy of tumors located in the brain will be discussed. 
Ongoing immunotherapeutic clinical trials will finally be described to appreciate the current status 
of these approaches.
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TUMOR iMMUNOTHeRAPY: CURReNT 
APPROACHeS

The aim of T cell-based tumor immunotherapy is to provide 
patients with tumor-specific T lymphocytes that will patrol the 
body to detect and kill tumor cells. This can be accomplished by 
either active or passive approaches.

Therapeutic vaccination
Therapeutic vaccination relies on the patient’s immune system 
to react to an injected tumor vaccine. Tumor vaccines aim to 
raise an immune response against tumor antigens using specific 
peptides, proteins, tumor cells (including lysates and eluates), 
mRNA, or DNA, in some cases pulsed onto dendritic cells (DCs) 
(3). One major advantage of peptide vaccines is that the antigen is 
well characterized, ensuring a precise targeting of the tumor with 
possibly little damage to normal tissue. In this regard, the best 
tumor antigen is a tumor-specific antigen (TSA), resulting from a 
tumor-specific mutation. Whereas such TSA are the ideal targets, 
they are not shared by the majority of patients and were until 
recently not frequently exploited for peptide vaccines. However, 
advances in personalized vaccine approaches will most probably 
revive their use, as patient-specific tumor mutations can now be 
relatively easily identified and used as vaccine antigens (4). In 
contrast to TSA, tumor-associated antigens (TAAs) are shared 
by a larger proportion of patients and have been widely used in 
cancer vaccines over the years. TAA derive from proteins overex-
pressed in cancer cells but retaining some expression in healthy 
tissues, which varies depending on the antigen. This is the major 
drawback to their use, as potential harm to normal cells cannot 
be excluded, which can be fatal depending on the cells or organ 
involved. Although TAA-based peptide vaccines have not shown 
major toxicity thus far (3), adoptive cell therapy has been faced 
with severe adverse events including deaths due to TAA expres-
sion by normal tissues (5), as will be discussed later. Another 
advantage of TAA is that they are shared among patients and can 
thus be exploited to design multipeptide vaccines with the aim to 
prevent tumor escape by antigen downregulation, a phenomenon 
observed occasionally with single-peptide vaccination (6, 7). It is 
hypothesized that the latter can be circumvented by the process 
of epitope spreading, whereby immune responses are directed 
toward additional tumor antigens liberated from lysis of the 
initially targeted cells (8, 9). Nonetheless, the use of well-defined 
antigens is limited by the need for identification and many 
groups have therefore chosen to vaccinate with whole tumor cells 
or tumor mRNA (10, 11). This approach has the advantage of 
providing patient-specific and multiple tumor antigens for vac-
cination but also presents the risk of inducing immune responses 
to non-tumor antigens present in the preparation. In addition, 
the requirement for sufficient tumor for vaccine preparation 
restricts their use to a subset of patients in malignances where 
small tumor samples are received, as is the case for tumors in the 
brain. To overcome this hurdle, some trials are using allogenic 
tumor cell lines for vaccine preparation (12). Finally, the use of 
undefined vaccine antigens makes immunomonitoring challeng-
ing, possibly hindering correlation between vaccine-induced 
immune responses and clinical outcome. Regardless of the 

antigen source, peptide and tumor vaccines have been injected 
with or without DC, the latter being used to bridge innate and 
adaptive immunity and more efficiently initiate vaccine-specific 
immune responses (13).

The Need for Adjuvants
Most antigens used in tumor vaccine are derived from self-
proteins and therefore are not recognized by pattern recognition 
receptors of innate immunity (14). Therefore, in most ongoing 
clinical trials, tumor vaccines are injected with an adjuvant, 
which aims at stimulating innate immunity and augmenting 
vaccine immunogenicity. Many different adjuvants have been 
used since the beginning of cancer vaccine administration, but 
the current development of more and more ligands for innate 
pathogen recognition receptors such as TLR, RLR, or STING 
ligands, among others, is likely to improve vaccine efficacy (15). 
TLR and RLR are sensors that detect viral/bacterial DNA or RNA, 
or bacterial, fungal, or protozoan lipoproteins/peptidoglycans 
and induce type I interferons. Synthetic TLR3, TLR4, TLR7, 
and TLR9 ligands are being tested in cancer patients as single 
agent or in combination with cancer vaccines (15) and ligands 
for other TLRs are in development. STING ligands induce type I 
interferon after detection of intracellular DNA and have shown 
impressive antitumor effect in preclinical models (16–18), which 
should stimulate rapid translation into the clinic. In addition to 
the use of adjuvants, it was shown that inducing inflammation 
at the vaccine site by vaccination with recall antigens (tetanus 
and diphtheria toxoids, Td) prior to tumor antigen DC vaccine 
improved patient survival by increasing DC migration to the vac-
cine draining LN, a process which was dependant on CCL3 (19).

T Cell Therapy
T cell therapy does not rely on patient vaccination but on the 
adoptive transfer of high numbers of autologous tumor-specific 
T cells. The latter can be generated from tumor-infiltrating 
lymphocytes (TIL) or from antigen-specific T cells enriched 
from peripheral blood. Alternatively, peripheral T cells can be 
engineered to express a high-avidity tumor-specific TCR (TCR-
transgenic T cells) or an antibody fragment [chimeric antigen 
receptor (CAR) T cells] (20). Adoptive transfer with TIL is based 
on the demonstration that T cells found at the tumor site are 
tumor-specific and endowed with tumor killing activity, reflected 
by the fact that, in many malignancies, infiltration by activated 
CD8 T cells correlates with patient outcome (21). However, few 
tumors are highly immunogenic and thus infiltrated by lympho-
cytes. In addition, the fact that tumor-derived T cells might be 
exhausted and might not persist long enough after injection for 
efficient tumor eradication has prompted the development of 
adoptive transfer with modified peripheral blood T cells (22). 
One option is TCR-engineered T cells that are made to express 
the α and β chains of a high affinity well-characterized HLA-
restricted tumor-specific TCR; these can be relatively rapidly 
generated and infused to any patient sharing the cognate HLA 
and expressing the specific tumor antigen (23). An   alternative 
approach is CAR T cells that are engineered to express a tumor-
specific antibody as a single chain fragment to redirect T cell 
recognition to the tumor (24). They are not HLA-restricted as 
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their moiety for antigen recognition is an antibody and can 
therefore be given to any patient expressing the cognate antigen; 
an additional benefit is that this overcomes the mechanism of 
tumor evasion by MHC downregulation. One advantage of TCR-
transgenic and CAR T cell transfer is that the large majority of 
the infused cells are tumor-specific, which provides the patient 
with considerable numbers of tumor-reactive cells. In addition, 
the antigen recognition domain of TCR-transgenic and CAR  
T cells can be mutated to increase affinity to the antigen, making 
infused cells of high avidity to the target antigen. Another key 
advantage of cell therapy with genetically modified T cells is 
the possibility to optimize the T cell product in terms of in vivo 
cell persistence, resistance to T regulatory T (Treg) cells, and 
effector functions (25). At the same time, increasing avidity 
and efficiency of infused cells renders the choice of antigen 
even more critical. As mentioned above, the level of adverse 
events observed in clinical trials using TCR-transgenic or CAR 
T cells is high and these can be fatal (5). On-target, off-tumor 
toxicities due to recognition by TAA-specific TCR-transgenic 
T cells of antigen expressed on healthy tissues are observed in 
the majority of patients treated (26). Severe adverse events due 
to cross-recognition of non-targeted antigens by high affinity 
mutated TCRs were also observed (27). To safeguard against 
this, many construct used to generate CARs now incorporate 
a suicide gene, with the aim to quickly deplete the transfused 
cells if life-threatening toxicity is seen. Cytokine storm, which 
is an early and potentially fatal adverse event resulting from the 
rapid activation of transferred T cells can usually be managed 
via treatment with anti-IL-6 antibodies (28). Another appealing 
solution was recently offered by the publication of a proof-of-
concept study in mice illustrating eradication of established 
solid tumors by transfer of high-avidity TCR-transgenic T cells 
specific for one single neoepitope (29). Hence, the development 
of mutation-specific TCR-modified cells, even if targeting a 
single epitope, could allow the design of safe and powerful 
clinical trials by inducing epitope spreading, as seen with other 
tumor-specific cell therapies (30, 31).

The Challenge of the Tumor 
Microenvironment
One of the greatest hurdles for efficient tumor immunotherapy 
is the fact that tumor-specific T cells have to exert their effector 
function in a hypoxic environment, in which chronic inflamma-
tion and tumor cells stimulate immunosuppression (32). Among 
the many mechanisms evolved by the tumor to escape immune 
response are the secretion of immunosuppressive cytokines 
(TGF-β and IL-10, among others), the recruitment or induction 
of immunosuppressive cells [Tregs, myeloid-derived suppressor 
cells (MDSCs), tumor-associated macrophages (TAMs)], the 
depletion of essential nutrients [by indoleamine dioxygenase 
(IDO) and arginase] and the expression of inhibitory mol-
ecules (FasL, PD-L1). Treg constitute an important fraction 
of tumor-infiltrating CD4+ T cells and inhibit tumor-reactive  
T cells either by direct cell contact or through TGF-β and IL-10 
production (33). TAMs contribute to IL-10 and TGF-β produc-
tion, to Treg recruitment by the secretion of CCL22, and promote 
tumor growth and invasion through production of endothelial 

growth factor, vascular endothelial growth factor (VEGF), and 
platelet-derived growth factor (PDGF), among others (34). 
MDSCs mostly act by inhibiting T and NK cell function through 
arginine depletion and production of nitric oxide and reactive 
oxygen species (35). Tumors also evade immune recognition by 
downregulating molecules required for T cell recognition, such 
as MHC, the antigen itself, or molecules implicated in antigen 
processing (32). Targeting these mechanisms is required to fully 
benefit from the efficacy of vaccine-induced or modified tumor-
specific T cells.

immune Checkpoint inhibitors
The immune checkpoint molecules expressed during normal 
immune responses to prevent immune overactivation are 
also playing a substantial role in antitumor immunity. Many 
of these molecules are expressed in tumor-specific T cells, 
probably due to chronic antigen stimulation occurring at the 
tumor site, and their expression correlates with an exhausted 
phenotype and loss of effector function (36). On the other 
hand, ligands for many immune checkpoint molecules are 
upregulated in the tumor environment by tumor cells, stromal 
cells, DCs, or MDCS and participate in antitumor response 
inhibition (37, 38). The physiological relevance of immune 
checkpoint molecules is supported by the outstanding clinical 
efficacy of immune checkpoint blockade (ICB) antibodies (39). 
Anti-CTLA4 and PD1 antibodies are now approved for several 
malignances and are being tested for virtually all tumor types 
together with anti-PD-L1 antibodies, and antibodies targeting 
Tim3 and LAG3 are in clinical trials, mostly in combination 
with anti-PD1 antibodies.

Immune checkpoint inhibitors work by allowing pre-existing 
immune responses to TAA or TSA to occur. However, efficacy 
of anti-CTLA4 and anti-PD1 as single agents has been greatest 
in malignancies that harbor a high rate of mutation, such as 
melanoma and some lung carcinoma (40, 41), suggesting that 
TSA-directed immune responses are prevalent. Accordingly, 
studies in melanoma have shown that the majority of tumor-
reactive T cells found in TILs were recognizing TSA and not TAA 
(42) and response to ICB has been shown to be associated with 
detection of neoepitope-specific T cell responses (40). A critical 
question for the use of ICB for malignancies harboring low 
rates of mutations is thus to be able to determine the minimal 
mutation load required to achieve efficient tumor destruction 
with these agents. In that regard, one study in melanoma 
showed that patients harboring tumors with >100 mutations 
were more prone to benefit from anti-CTLA4 treatment (40), 
suggesting a threshold for ICB molecule efficacy. Nonetheless, 
this is not absolute, as some patients still benefit from treatment 
with IBC despite low-mutation rate (43). In addition to allow-
ing neoantigen-specific immune responses to occur, immune 
checkpoint inhibitors are also able to amplify vaccine-induced 
immune responses and trials of peptide vaccination against 
melanoma antigens in combination with a soluble LAG3 have 
been reported, which showed the safety of the approach (44, 
45). Combination with other immunotherapies is ongoing and 
is likely to be an important contribution of ICB antibodies to 
cancer treatment in the future.
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iMMUNe ReSPONSeS TO TUMORS 
ARiSiNG iN THe BRAiN

With the exception of primary central nervous system (CNS) 
lymphoma (PCNSL) arising from B cell transformation, most 
primary brain tumors (astrocytoma, oligodendroglioma, oli-
goastrocytoma, and ependymoma) derive from glial cells. They 
account for approximately 2% of all cancers, but the associated 
mortality is very high, the 5-year survival rates for grade III astro-
cytoma and glioblastoma (GBM, grade IV), the most common, 
being 30 and 3%, respectively (46). The major characteristics of 
GBM are its highly invasive nature and extraordinarily low rate 
of metastasis outside the brain. Regarding PCNSL, it is a rare 
disease, representing about 2% of all primary brain tumors in 
immunocompetant hosts (47), but, similar to gliomas, is very 
aggressive and associated with poor prognosis. Likewise, it also 
exceptionally metastasizes outside the brain, for reasons that are 
not yet clear.

Although it was long thought that the brain was an immune 
sanctuary, it is now established that immune responses toward 
tumors located in the CNS are able to occur. This is substantiated 
by both animal models of intracranial tumors, which show that 
strong antitumor immune responses are able to control tumor 
cells (48, 49), and by observations in humans revealing that 
T cells are detected at the tumor site and positively influence 
survival (50–52). Antigen-specific spontaneous B and T cell 
immune responses have been detected in patients with glioma 
(53–56), although less frequently than in other malignancies 
such as melanoma. PCNSL are associated with a robust inflam-
matory response, including infiltrating activated macrophages 
and reactive T cells, the latter being associated with a favorable 
outcome (57, 58).

The mechanisms of immune system activation by tumors 
located in the brain have been explored in the last decades. 
Features of the brain, which are different from other sites, namely 
lack of conventional lymphatic draining, absence of resident DCs 
in the brain parenchyma, and existence of the blood–brain bar-
rier, are no longer regarded as obstacles to initiation of immune 
responses but might present a high threshold to be reached before 
efficient spontaneous antitumor immunity is induced. In spite 
of these, it has been shown that antitumor immune responses 
were able to occur. Antigens are able to drain from the brain 
parenchyma to reach the cervical lymph nodes (59, 60) where 
they are presented by DCs to T cells (61), leading to the prolifera-
tion of tumor-specific cells that will be able to home to the brain 
via expression of, among other molecules still to be discovered, 
VLA4/α4β1 and CXCR3 (62, 63). These T cells are retained at 
the tumor site via expression of αEβ7 (62) and could potentially 
represent tissue-resident memory cells poised to be reactivated 
upon re-encounter of tumor-expressed antigens (64).

However, brain tumors, similar to tumors arising in other sites, 
are able to resist immune attack through various means includ-
ing MHC downregulation (65), release of immunosuppressive 
cytokines such as TGF-β (66), VEGF (67), prostaglandin E2 (68), 
IL-10 (69), and of enzymes such as IDO (70) and arginase (71), 
attraction of Tregs (72), and MDSCs (71, 73). In particular, Tregs 
have been shown in mice models of spontaneous glioma to be 

present at the tumor site very early, even before symptoms are vis-
ible (35). IDO, which can inhibit conventional T cells and induce 
Tregs, is expressed virtually in all GBM and level of expression 
is associated with poor prognosis (70). In addition, GBM can 
induce apoptosis of activated T cells through expression of FasL 
(74) and PD-L1, the latter being expressed by GBM cells but also 
by TAMs (75, 76) and able to inhibit glioma-infiltrating lym-
phocytes, which commonly express PD-1 (77). Finally, hypoxia 
is associated with poor clinical outcome in GBM patients (78). 
All these parameters converge to attenuate spontaneous immune 
responses occurring in patients with brain tumors, leading to 
inefficient tumor control.

In addition to that, intrinsic differences between the brain and 
peripheral organs exist, which might lead to suboptimal immune 
activation against tumors located in the brain as compared to 
tumors located in peripheral organs (79). These differences cer-
tainly need to be considered when designing immunotherapeutic 
strategies for tumors in the brain.

Priming of immune Responses 
to Brain Tumor Antigens
As described above, initiation of immune response to antigens 
located in the brain occurs, antigen presentation to naïve T 
cells occurring either via drainage of soluble antigen to LN or 
by transport via emigration of antigen-bearing DCs (62, 80). 
Immune response elicited by antigens that drain predominantly 
to the cervical LN were shown to be less effective than responses 
elicited to the same antigen reaching other lymph nodes (81), 
potentially due to induction of immunosuppressive myeloid 
cells. This might lead to suboptimal induction of immune 
response to tumors located in the brain as compared to other 
sites. Nonetheless, it cannot be entirely excluded that immune 
responses to brain tumors are elicited in the periphery in response 
to circulating tumor cells reaching secondary lymphoid organs; 
these having been reported in a significant number of patients 
with GBM (82, 83).

These issues need to be taken into consideration for therapeutic 
vaccination. A very important concern for tumor vaccines is the 
site of antigen injection to prime antitumor immune responses. 
In the many clinical trials of peptide and tumor vaccination per-
formed in the last decades, several injection sites have been used, 
precluding evaluation of the efficacy of vaccination from differ-
ent sites. However, a preclinical study comparing injection of a 
model antigen at different sites in glioma-bearing mice was able 
to demonstrate that vaccinating far away from the tumor was best 
to induce optimal CD8 effector function and brain infiltration 
(84). This was due to tumor-derived immunosuppressive factors 
reaching the LN and influencing the T cell response. These results 
are compatible with spontaneous antitumor immunity discussed 
previously (81).

Homing to the Brain
Tumor-specific T cells generated by vaccination or adoptive cell 
transfer need to reach the brain in order to exert their effector 
function. During a spontaneous antitumor immune response, 
homing of T cells to the tumor site is determined at the site of 
antigen capture by the APC, which will imprint T cells during 
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priming in the lymph nodes (62). Regarding the CNS, it was 
shown that T cell expression of α4β1 and CXCR3 facilitated 
infiltration of the brain (62, 63). It is therefore important to 
replicate this brain homing phenotype during therapeutic vac-
cination and adoptive cell transfer in order for sufficient cells 
to reach the brain. Indeed, it has been shown in animal models 
that adoptively transferred T cells are less efficient at infiltrat-
ing the brain than peripheral sites (85). Similarly, although 
adoptive transfer of TIL was shown to mediate regression of 
melanoma brain metastases (86), the latter have been shown to 
be less infiltrated by CD3+ T cells than extracerebral metastatic 
sites, suggesting lower brain T cell homing (87). Therefore, for 
vaccine-induced or adoptively transferred cells to reach the brain, 
additional interventions need to be made. Brain homing has been 
shown to be enhanced by CXCL10, one of the CXCR3 ligands, 
secreted at the tumor environment (88), which can be promoted 
by injection of poly-ICLC (polyriboinosinic–polyribocytidylic 
acid stabilized with poly-l-lysine and carboxymethylcellulose), 
a TLR3 agonist. TLR3 is the most abundant TLR expressed by 
astrocytes and microglial cells and its activation has been shown 
to induce pro-inflammatory cytokines such as TNF-α, IL-6 
and IFN-β and chemokines such as CCL2, CCL5, and CXCL10 
(89). As a consequence, poly-ICLC has been extensively tested 
in patients with glioma, with the reported induction of robust 
vaccine-specific CD8 T cell responses associated with detection 
of CXCL10 in the circulation (90, 91). Regarding adoptive cell 
transfer, choosing culture conditions to generate cells with a 
tumor homing phenotype may be possible, although the exact 
conditions for this are not yet defined. In addition, transgenic 
expression of selected chemokine receptors could be envisaged in 
the case of TCR-transgenic and CAR T cells (92), although these 
strategies remain in the preclinical phase at present. Alternatively, 
it has been shown that increased brain migration of adoptively 
transferred CD8 T cells can be obtained by co-infusion of CD4 
T cells specific for the same tumor antigen and bearing the Th1 
phenotype (93).

effector Function in the Brain 
immunosuppressive environment
Even if we know that immune response are able to occur in the 
brain, this organ nonetheless tightly regulates inflammation, 
mostly through TGF-β secretion. TGF-β2 is the most abundant 
TGF-β isoform detected in the adult brain and modulates response 
to brain lesions, including blocking of several pro-inflammatory 
cytokines and of MHC class II upregulation (94). In addition, 
the brain is one of the most densely vascularized organs in 
the body with VEGF being the main inducer of angiogenesis. 
As stated before, VEGF is also a strong inducer of immunosup-
pression by mediating accumulation of MDSC and Tregs and 
inhibiting the function and migration of T lymphocytes to the 
tumor (95). In  consequence, tumor-specific T cells elicited by 
immunotherapy have to overcome, once they reach the brain, a 
series of obstacles before they can exert their effector function. 
As indicated before, CNS cells express FasL, which will induce 
apoptosis of incoming Fas+ T cells (96). Surviving cells will have 
to cope with the immunosuppressive factors and cells described 
above and will further be inhibited by PD-L1 expression by 

tumor and myeloid cells. All these factors need to be considered 
to design efficient immunotherapies.

efficacy of immunotherapies
Recently, the distinction of T cell inflamed versus non-T cell 
inflamed tumors has allowed stratifying patients according to 
prognosis and response to immune checkpoint inhibitors (97). 
The current understanding is that, in T cell inflamed tumors, 
recruitment of tumor-specific CD8 T cells leads to secretion of 
pro-inflammatory (mostly IFN-γ) cytokines, which stimulates 
upregulation of PD-L1 and IDO and recruitment of Tregs (98, 99). 
In non-T cell inflamed tumors, T cell markers and chemokines 
involved in T cell recruitment are not detected, possibly due to 
lack of priming of the antitumor response or/and lack of migration 
at the tumor site. Importantly, T cell inflamed tumors have been 
shown to be associated with response to both therapeutic vaccines 
(100) and checkpoint blockade (98, 101, 102). In this regard, GBM 
can be considered as a poorly T cell inflamed tumor, as compared 
to tumors located in peripheral organs such as melanoma, renal 
cell carcinoma, breast, or ovarian cancers (103). Similarly, PCNSL 
are poorly infiltrated by immune cells as compared to their periph-
eral counterpart (104), suggesting that tumors located in the brain 
might be less prone to respond to immunotherapies, including 
ICB. Immunotherapeutic interventions should therefore include 
strategies to promote inflammation at the tumor site in the brain, 
possibly by inducing innate signaling to trigger antitumor adap-
tive immunity. One strategy to achieve this is tumor delivery of 
stimulator of interferon genes (STING) agonists, which have been 
shown in mouse models of glioma to promote infiltration by CD4 
and CD8 T cells and prolong survival (18). Alternatively, type I 
IFN production can be induced by radiotherapy (105), and radia-
tion of the tumor site has been shown to induce double strand 
DNA breaks and subsequent type I IFN activation via STING 
in mouse models of glioma (106). Finally, one study in mouse 
models, not yet explored for GBM, showed that treatment of 
non T cell inflamed tumors with LIGHT, a member of the tumor 
necrosis factor superfamily, led to secretion of pro-inflammatory 
chemokines and recruitment of T cells at the tumor site, which 
was associated with greater response to ICB (107).

Choice of Antigens
The choice of antigen for designing immunotherapeutic strate-
gies is arguably even more important for tumors located in the 
brain as compared to those occurring in other sites. Indeed, 
whereas attack of healthy cells expressing the tumor antigen to 
some level, such as skin depigmentation observed due to the 
targeting of melanoma antigens shared by melanoma cells and 
melanocytes, can be tolerated in some organs, this is more critical 
for the brain. TAA recognized by T cells have been identified in 
glioma, although their number is fewer than for other malig-
nances such as melanoma. They include, among others, IL13Rα2, 
EphA2, WT1, and survivin (108) and the antigens composing the 
IMA950 peptide cocktail (56), which were eluted from the surface 
of GBM cells and were shown to be expressed by the majority of 
patients with GBM (56). Equally, few TSA have been detected to 
date for GBM, but more will probably be identified in the future 
thanks to increased use of tumor sequencing and patient-specific 
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TABLe 1 | Currently ongoing peptide and tumor vaccine trials in tumors located in the brain.

immunogen Adjuvant Additional 
drugs

Patient 
population

Diagnostic Phase estimated 
enrollment

Country NCT number

Peptide vaccines

Peptide alone

Tumor-associated antigens (TAAs)

Single peptide

Long peptide from 
survivin-KLH

GM-CSF + 
montanide

Newly diagnosed 
glioblastoma 
(GBM)

II 50 USA NCT02455557

Multiple peptides

HLA-A2-restricted 
peptides from EphA2, 
IL-13Rα2, and survivin

Poly-ICLC Pediatric HGG, DIPG, and 
recurrent LGG

Pilot 60 USA NCT01130077

HLA-A2-restricted 
peptides from EphA2, 
IL-13Rα2, and survivin

Poly-ICLC Pediatric LGG II 25 USA NCT02358187

HLA-A2-restricted 
peptides from EphA2, 
IL-13Rα2, and survivin

Imiquimod Pediatric Recurrent  
ependymoma

na 24 USA NCT01795313

SL-701 (HLA-A2-
restricted peptides from 
EphA2, IL-13Rα2, and 
survivin)

Poly-ICLC Bevacizumab Adult Recurrent GBM I/II 76 USA NCT02078648

IMA950 (10 HLA-A2-
restricted peptides 
from BCAN, CSPG4, 
FABP7, IGF2BP3, MET, 
NLGN4X, NRCAM, 
PTPRZ1, TNC plus 2 
MHC class II peptides 
from survivin and MET)

Poly-ICLC Adult I/II 16 Switzerland NCT01920191

(Continued )
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epitope identification (109). Until now, the most used TSA for 
GBM immunotherapy are EGFRvIII, a mutant antigen derived 
from the EGFR protein, which is expressed by 20–50% of GBM 
patients (110) and IDH1R132H, derived from the IDH1 protein 
and mainly expressed in grade II and III astrocytoma and patients 
with secondary GBM (111).

Altogether, tumors located in the brain have particular immu-
nological features that will need to be taken into account for the 
design of immunotherapies. Among this, (i) the careful choice 
of antigen, (ii) the need to stimulate inflammation of the tumor 
site, (iii) to target the brain immunosuppressive milieu, (iv) to 
vaccinate far from the tumor site, and (v) to help cells home to 
the brain might be mandatory to address for brain tumor immu-
notherapy to be efficient.

ONGOiNG CLiNiCAL TRiALS FOR 
TUMORS iN THe BRAiN

Most immunotherapeutic approaches developed to date for 
tumors located in the brain have mostly targeted patients with 
glioma. PCNSL has not yet attracted much attention for vaccines 

and cell therapy and only one trial is investigating ICB in this 
malignancy. Most of the trials described below will therefore 
relate to glioma.

Peptide and Tumor vaccines
Peptide vaccines (with or without DCs) for GBM have mostly 
used multipeptidic TAA vaccine formulations in adjuvant, 
incorporating the EphA2, IL-13Rα2, WT1, and survivin (90, 
91, 112), or the IMA950 cocktail (113), although some peptides 
have been used alone (114–116). These trials have shown that 
vaccine-specific immune responses were elicited, which were 
not associated with autoimmunity, and clinical benefit was 
possibly observed for some individual patients. Following 
these results, additional studies are being conducted (Table 1), 
with single peptides (NCT02455557, NCT02049489), cocktails 
of minimal T cell epitopes (NCT01130077, NCT02358187, 
NCT02078648, NCT01920191, NCT02149225, NCT02709616), 
mixtures of overlapping peptides (NCT02332889), or DC-pulsed 
mRNA (NCT02649582, NCT02529072, NCT02465268, 
NCT02366728). One study is addressing efficacy of vaccina-
tion in pediatric patients with ependymoma (NCT01795313). 
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immunogen Adjuvant Additional 
drugs

Patient 
population

Diagnostic Phase estimated 
enrollment

Country NCT number

Personalized 
overexpressed HLA-A2 or 
-A24-restricted peptides 
plus mutated peptides

GM-CSF + 
poly-ICLC

Adult Newly diagnosed 
GBM

I 20 6 centers 
in Europe 
(GAPVAC)

NCT02149225

HSPPC-96 None Bevacizumab Adult Recurrent GBM II 165 USA NCT01814813

Tumor-specific antigens (TSAs)

Single peptide

EGFRvIII peptide GM-CSF Bevacizumab Adult EGFRvIII+ 
recurrent GBM

II 168 USA  
(ReACT)

NCT01498328

EGFRvIII peptidea GM-CSF Adult EGFRvIII+ 
recurrent GBM

III 700 Worldwide 
(ACT IV)

NCT01480479

IDH1R132H peptide Montanide + 
imiquimod

Adult IDH1R132H-
mutated newly 
diagnosed HGG

I 39 Germany 
(NOA-16)

NCT02454634

IDH1R132H peptide Montanide + 
GM-CSF + Td 
vaccine

Adult IDH1R132H-
mutated recurrent 
LGG

I 24 USA  
(RESIST)

NCT02193347

Mutated peptides Poly-ICLC Adult Newly diagnosed 
GBM (UnMe 
MGMT)

I 20 USA NCT02287428

Mutated long peptide Poly-ICLC Adult Newly diagnosed 
GBM

Pilot 10 USA NCT02510950

Personalized 
overexpressed HLA-A2 
or -A24-restricted 
peptides plus mutated 
peptides

GM-CSF + 
poly-ICLC

Adult Newly diagnosed 
GBM

I 20 6 centers 
in Europe 
(GAPVAC)

NCT02149225

DC + peptides/mRNA

TAAs

Single peptide

ICT-121  
(CD133 peptides)

None Adult Recurrent GBM I 20 USA NCT02049489

Multiple peptides

Overlapping peptides 
from MAGE-A1, 
MAGE-A3, and 
NY-ESO-1

Poly-ICLC Decitabine Pediatric HGG, PNET, and 
medulloblastoma

I/II 10 USA NCT02332889

Personalized among 
preselected antigens

Imiquimod or Td 
vaccine

Adult Newly diagnosed 
GBM

I/II 20 China 
(PERCELLVAC)

NCT02709616

mRNA

WT1 mRNA None Adult Newly diagnosed 
GBM

I/II 20 Belgium 
(ADDIT-GLIO)

NCT02649582

pp65 mRNA None Nivolumab Adult Recurrent HGG I 66 USA  
(AVERT)

NCT02529072

pp65 mRNA GM-CSF + Td 
vaccine

Adult Newly diagnosed 
GBM

II 150 USA  
(ATTAC-II)

NCT02465268

pp65 mRNA Td vaccine Basiliximab Adult Newly diagnosed 
GBM

II 116 USA 
(ELEVATE)

NCT02366728

(Continued )
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immunogen Adjuvant Additional 
drugs

Patient 
population

Diagnostic Phase estimated 
enrollment

Country NCT number

Tumor vaccines

Tumor alone

Tumor lysate from 
GBM6 cell line

Imiquimod Adult LGG Pilot 27 USA NCT01678352

Tumor lysate from 
GBM6 cell line

Poly-ICLC Adult Recurrent LGG Pilot 30 USA NCT02549833

Tumor lysate from 
GBM6 cell line

Imiquimod Pediatric DIPG Pilot 8 USA NCT01400672

DC + tumor

Tumor lysate Imiquimod Adult + pediatric Recurrent  
LGG or HGG

I 20 USA NCT01808820

Tumor lysate Imiquimod Pediatric Recurrent  
HGG

I 20 USA NCT01902771

Tumor lysate Resiquimod + 
poly-ICLC

Adult Newly diagnosed 
or recurrent  
HGG

II 60 USA NCT01204684

Tumor lysate None Adult Newly diagnosed 
or recurrent  
LGG

II 18 USA NCT01635283

Tumor lysate from 
allogenic stem-like 
cell line

None Bevacizumab Adult Newly diagnosed 
or recurrent  
GBM

I 40 USA NCT02010606

Tumor lysate 
from autologous  
stem-like cells

None Adult Newly diagnosed 
GBM

II 100 China NCT01567202

DIPG, diffuse intrinsic pontine glioma; HGG, high-grade (III or IV) glioma; LGG, low-grade (grade II) glioma; poly-ICLC, polyinosinic–polycytidylic acid stabilized with polylysine and 
carboxymethylcellulose; Td, tetanus diphtheria; UnMe MGMT, unmethylated MGMT promoter.
aThis study was recently discontinued after interim analysis due to absence of benefit as compared to control arm.
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Interestingly, some trials of personalized vaccination are ongo-
ing (NCT01814813, NCT02709616, NCT02149225), one of 
which selects the peptides according to peptide elution from the 
patient’s tumor, thus ensuring presence of the target at the tumor 
surface (NCT02149225).

Trials with TSA in glioma have mostly focused on the EGFRvIII 
mutation as a single peptide vaccine and two clinical trials in 
newly diagnosed (NCT01480479) or recurrent (NCT01498328) 
GBM are ongoing. However, whereas phase II studies had shown 
benefit for patients with recurrent or newly diagnosed GBM 
(7, 117, 118), the unique phase III trial assessing the benefit of 
EGFRvIII peptide vaccine in addition to standard treatment in 
newly diagnosed GBM patients (NCT01480479) was recently 
discontinued due to absence of improved overall survival in 
patients receiving the vaccine versus standard treatment.1 Maybe 
this vaccine would profit from combination with immune 
checkpoint inhibitors to enhance vaccine efficacy or with other 
peptides to prevent immune escape (7). In addition to EGFRvIII, 

1 http://www.celldex.com/pipeline/rindopepimut.php.

clinical trials targeting a long peptide spanning the IDH1R132H 
mutation occurring in grade II/III and secondary GBM are 
ongoing (NCT02454634, NCT02193347). Identification of the 
latter epitope, which is recognized by CD4 T cells, provides the 
opportunity to target both CD4 and CD8 T cells by generating 
a composite vaccine including the IMA950 antigens and the 
peptide spanning the IDH1R132H mutation. Finally, three 
trials are assessing efficacy of vaccination with neoantigens in 
GBM (NCT02287428, NCT02510950, NCT02149225), one trial 
importantly addressing the presence of the mutated peptide at the 
tumor cell surface (NCT02149225).

Although some studies inject peptide or DC/peptide vac-
cines alone, the majority of studies inject the peptides with an 
adjuvant, mostly the TLR3 ligand poly-ICLC, the TLR7 ligands 
imiquimod and resiquimod, GM-CSF, or Montanide. Given the 
critical importance of adjuvant choice for therapeutic cancer vac-
cination revealed in preclinical studies (119–121), this issue will 
eventually have to be addressed in a clinical context. Interestingly, 
subsequent to clinical and mice studies showing that precon-
ditioning the tumor vaccine injection site by a recall response 
to tetanus/diphtheria improved lymph node homing of tumor 
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TABLe 2 | Currently ongoing cell therapy trials in tumors located in the brain.

Specificity Adjuvant Additional drugs Patient 
population

Diagnostic Phase estimated 
enrollment

Country NCT number

Naturally occurring T cells

CMV-specific T cells Adult Newly diagnosed or  
recurrent HGG

I/II 54 USA NCT02661282

CARs

EGFR (CD28 costimulatory 
domain)

Cyclophosphamide 
fludarabine

Adult Recurrent glioblastoma  
(GBM) with EGFR amplification

I 10 China NCT02331693

EGFRvIII (CD28 and 41BB 
costimulatory domains)

IL-2 Cyclophosphamide 
fludarabine

Adult EGFRvIII+ recurrent GBM I/II 107 USA NCT01454596

EphA2 (CD28 costimulatory 
domain)

Adult Newly diagnosed or  
recurrent HGG

na 60 China NCT02575261

Her2 (CD28 costimulatory 
domain)

Adult Her2+ recurrent GBM I 14 USA  
(iCAR)

NCT02442297

IL13Rα2 (41BB 
costimulatory domain)

Adult Recurrent HGG I 36 USA NCT02208362

MUC1 (CD28 and 41BB 
costimulatory domains)

IL-12 
in CAR 
construct

Cyclophosphamide 
fludarabine

Adult MUC1+ recurrent GBM I/II 20 China NCT02617134

HGG, high-grade (III or IV) glioma; na, not available.
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antigen-bearing DCs and magnitude of immune responses (19), 
four studies (NCT02193347, NCT02709616, NCT02465268, 
NCT02366728) use a Td recall vaccine as adjuvant, some testing 
as part of their clinical trial efficiency of DC migration to lymph 
nodes (19). Finally, one study is adding the anti-PD1 antibody 
nivolumab to a pp65CMV vaccine in recurrent grade III or IV 
glioma patients.

Vaccines using autologous tumor or allogenic GBM cell lines 
as source of tumor antigens are mostly employing pulsed DCs, 
although three pilot studies are injecting lysate from the allo-
genic GBM6 stem-like cell line (122) without DCs, in low-grade 
glioma (LGG, grade II, NCT01678352, NCT02549833) or diffuse 
intrinsic pontine glioma (DIPG, NCT01400672; Table 1). Trials 
using tumor lysate-pulsed DCs are using either autologous tumor 
(NCT01808820, NCT01204684, NCT01902771, NCT01635283), 
or stem-like cells (NCT01567202), or an allogenic stem-like cell 
line (NCT02010606). As for peptide vaccines, tumor cell vaccines 
are usually injected with one of the three above-mentioned TLR 
ligands, with one study combining poly-ICLC and resiquimod. 
As stated before, there is no trial of peptide or tumor vaccine 
ongoing for PCNSL.

Cell Therapy
At least one study of TIL infusion has been performed to date 
in brain tumor patients (123). With regard to peripheral blood-
derived antigen-specific T cell transfer, only one study is being 
conducted, assessing the safety and efficacy of autologous CMV 
pp65-specific T cells to target GBM cells potentially expressing 
CMV (NCT02661282) (124). This might be due to the difficulty 
in detecting high levels of non-viral glioma-specific T cells in 
the peripheral blood of glioma patients and to the difficulty 

of amplifying them to great numbers for reinfusion. The latter 
phenomenon is probably related to the systemic defects in T cell 
function and proliferation observed in glioma patients, which are 
more pronounced than in other malignancies (125). Studies using 
TCR-transgenic T cells incorporating TCRs from glioma-specific 
T cells are similarly not yet being tested in the clinical setting, 
most probably due to the paucity of antigen-specific T cell clones 
characterized thus far for glioma. One study reporting generation 
of antigen-specific T cell clones from patients with GBM specific 
for different TAA (56) might be the first step toward develop-
ment of this approach as it provides T cells with exploitable TCR 
sequences.

Studies with CARs have, in contrast, been quite extensively 
tested in preclinical glioma models and are in clinical trials (126). 
In the last 20 years of CAR development, initial experiments using 
first generation CARs bearing only the CD3ζ chain as signaling 
domain showed that such constructs were limited in efficacy. This 
led to the design of constructs incorporating CD28 or 4-1BB as 
costimulatory molecules (second generation CARs), which 
resulted in impressive success for the treatment of hematological 
malignances (127). Third generation CARs incorporating two 
costimulation molecules are being tested in B cell malignancies 
and neuroblastoma and a few clinical trials are even testing 4th 
generation CARS with additional CD27 costimulation. In brain 
tumors, CAR studies targeting six different antigens (EGFR, 
EGFRvIII, EphA2, Her2, IL13Rα, and MUC1) are ongoing 
(NCT02331693, NCT01454596, NCT02575261, NCT02442297, 
NCT02208362, NCT02617134), using second (CD28 or 41BB 
costimulation) or third (CD28 and 41BB costimulation) genera-
tion constructs (Table 2). Of note, the IL13Rα CAR, unlike the 
majority of CARs that use a single chain fragment variable part 
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TABLe 3 | Currently ongoing trials targeting the tumor microenvironment.

Target Molecule Additional 
intervention

Patient 
population

Diagnostic Phase estimated 
enrollment

Country NCT number

TGF-β

Galunisertib (TGF-β  
receptor I kinase 
Inhibitor)

Nivolumab Glioblastoma (GBM),  
recurrent NSCLC, and HCC

I/II 100 USA  
and Spain

NCT02423343

iDO

Indoximod (D-1MT) Bevacizumab Adult Recurrent HGG I/II 144 USA NCT02052648

Indoximod (D-1MT) Pediatric Newly diagnosed HGG, 
ependymoma, and 
medulloblastoma

I 66 USA NCT02502708

Epacadostat Nivolumab Adult Advanced solid tumors including 
recurrent GBM

I/II 291 USA NCT02327078

STAT3

WP1066 Adult Recurrent HGG, melanoma brain 
metastases

I/II 33 USA NCT01904123

MDSC

Capecitabine  
(prodrug of 
5-flourouracil)

Bevacizumab Adult Recurrent GBM I 12 USA NCT02669173

CSF1-R inhibitor 
(PLX3397)

Newly diagnosed GBM I/II 65 USA NCT01790503

Anti-CSF1-R  
antibody (FPA008)

Nivolumab Adult Solid tumors including GBM I 280 USA NCT02526017

Tregs

Basiliximab  
(anti-CD25)

pp65 mRNA  
Td vaccine

Adult Newly diagnosed GBM II 116 USA  
(ELEVATE)

NCT02366728

d-1MT, 1-methyl-d-tryptophan; HGG, high-grade (III and IV) astrocytoma; nivolumab, fully human IgG4 anti-PD1; NSCLC, non-small cell lung cancer.
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(scFv) as the antigen-binding moiety, is composed of a modi-
fied IL-13 molecule (128). The safety profile of targeting some 
of the above-mentioned antigens is under scrutiny because of 
reported toxicity due to Her2 expression in heart and lung (129) 
and by expression of non-mutated EGFR in epithelial cells (130). 
Interestingly, two studies are injecting the CAR T cells in the brain, 
either intratumorally, in the resection cavity, or intraventricularly 
(NCT02442297, NCT02208362). Two other trials are using 
immunostimulatory cytokines, namely IL-2 with the 3rd genera-
tion EGFRvIII-specific CAR (NCT01454596) and IL-12 with the 
3rd generation MUC1-specific CAR (NCT02617134, in the CAR 
construct itself), with the aim to enhance CAR T  cell  efficacy, 
although caution is warranted for IL-12 use (131). Finally, in an 
attempt to transfer CAR T cells that can best repopulate the T 
cell niche and generate long-term effector cells, a study targeting 
the IL13Rα protein is injecting central memory-enriched CAR 
T cells (132). Again, no cell therapy protocols are ongoing for 
PCNSL.

TARGeTiNG THe TUMOR eNviRONMeNT

As discussed above, TGF-β is one of the main immunosuppres-
sive molecules requiring targeting for tumors located in the brain. 

Accordingly, many trials using mRNA antisense oligonucleotides, 
soluble receptors, or antibodies to TGF-β and molecules inhibit-
ing the kinase activity have been tested (133). Although reports 
from preclinical models were promising (66), clinical studies thus 
far have failed to demonstrate survival benefit associated with 
the use of TGF-β-targeting agents. The TGF-β mRNA antisense 
oligonucleotides trabedersen (AP12009) has not shown benefit 
in patients with grade III or IV glioma and is not being further 
tested (134). Galunisertib (LY2157299), a TGF-β receptor I 
kinase inhibitor, failed to demonstrate improved overall survival 
as compared to lomustine in patients with recurrent GBM (135) 
but is now being tested in combination with nivolumab in patients 
with GBM and recurrent pancreatic cancer and hepatocellular 
carcinoma (NCT02423343; Table 3). Similarly, fresolimumab, a 
pan-TGF-β antibody failed to show survival benefit in patients 
with glioma (136). Although these results are quite discourag-
ing, it is important to pursue investigation of TGF-β targeting. 
One reason for the inefficiency of TGF-β blockade might be the 
activation of alternative pathways. We might therefore need to 
simultaneously target TGF-β and alternative pathways such as 
EGFR, PI3K/Akt, NF-κB, or JAK/signal transducer and activator 
of transcription (STAT), a strategy which has shown efficacy in 
preclinical studies of pancreatic tumors (137).
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Vascular endothelial growth factor, due to its critical role 
in brain tumor angiogenesis, is being targeted using different 
approaches. The monoclonal antibody bevacizumab is approved 
as a single agent for the treatment of recurrent glioma (138, 139), 
but did not demonstrate survival benefit for patients with newly 
diagnosed glioma (140, 141). It is being used in trials of therapeu-
tic vaccination in the setting of recurrent glioma (NCT02078648, 
NCT01814813, NCT01498328), but is not tested per  se in 
combination with other interventions. Aflibercept (VEGF Trap), 
a recombinant fusion protein, which acts as scavenger molecule 
for VEGF, improved survival in preclinical models, possibly due 
to its high affinity for VEGF, but failed to demonstrate antitumor 
activity in patients (142). A number of small molecule inhibi-
tors of the kinase activity of VEGF receptor are being tested in 
glioma (including cediranib, sunitinib, pazopanib, vandetanib, 
and sorafenib), but not in combination with immunotherapy for 
the time being.

A third pathway of investigation in brain tumors is the IDO 
pathway, IDO being detected in virtually all glioma samples, 
although not normally expressed in the brain (70, 143). Studies 
in mouse models of glioma using the IDO inhibitor 1 meth-
yltryptophan (1MT) suggested that combination with other 
molecules might be required for antitumor activity to be seen 
(144); however, indoximod (D-1MT) is being tested as single 
agent in patients with newly diagnosed (NCT02502708, pediat-
ric population) and recurrent glioma (NCT02052648). A more 
recent IDO inhibitor, epacadostat (INCB24360), selectively 
inhibits the enzymatic activity of IDO1 and is being tested in 
patients with advanced solid malignancies including recurrent 
GBM, in combination with the anti-PD1 antibody nivolumab 
(NCT02327078).

Another currently targeted protein in brain tumors is STAT3, 
a molecule that is downstream of several oncogenic signal-
ing cascades in glioma, including EGFR and PDGF receptor. 
Constitutive STAT3 activation is detected in 50–60% of high-
grade glioma (145) and mediates immune suppression at the 
tumor site (146). It is also been shown to be activated in PCNSL 
(147). A trial with WP1006, an inhibitor of the JAK2/STAT3 
pathway, is currently ongoing in patients with recurrent GBM 
(NCT01904123).

Inhibiting MDSCs is under investigation, using several 
approaches that include induction of MDSC differentiation into 
DC, decreasing MDSC levels, and inhibiting MDSC function 
(148). One study in patients with recurrent GBM (NCT02669173) 
aims at targeting MDSC using low-dose capecitabine, a prodrug 
of 5-fluorouracil, which was shown to kill MDSC and restore 
antitumor T cell responses (149). Another way of MDSC deple-
tion is the use of colony-stimulating factor 1 receptor (CSF1-R) 
inhibitors. CSF1-R is overexpressed by MDSC and TAMs in 
human glioma and its expression was shown to correlate with 
glioma grade (150, 151). It is involved in the recruitment of TAM 
and MDSC at the tumor site via interaction with CSF1 and is 
necessary for their survival. CSF1-R inhibition showed improved 
survival in a preclinical model of glioma, with reprograming of 
the TAM into pro-inflammatory cells (152). Use of the CSF1-R 
inhibitor PLX3397 as single agent in patients with recurrent GBM 

showed no improvement in survival (153), however, combina-
tion studies in preclinical models of melanoma demonstrated 
improvement of adoptive cell therapy, accompanied by reduc-
tion of tumor-infiltrating TAM and MDSC and augmentation of 
IFN-γ-secreting TILs (154), advocating for its use in combina-
tion therapies in humans. The same molecule is currently being 
tested in patients with newly diagnosed GBM (NCT01790503) 
and another trial using a CSF1-R antibody is ongoing in combi-
nation with the anti-PD1 antibody nivolumab in patients with 
advanced cancers including glioma (NCT02526017).

Finally, inhibition of Tregs is currently being investigated for 
tumors in the brain in one trial only, although initial studies using 
an anti-CD25 antibody to deplete Tregs in combination with an 
EGFRvIII peptide vaccine showed enhanced humoral response to 
the vaccine in patients receiving the antibody (155). In the ongo-
ing trial, pp65 CMV mRNA-pulsed DCs are injected into a Td 
vaccine-pretreated site, with or without the anti-CD25 antibody 
basiliximab (NCT02366728).

At the moment, there are no trials targeting the tumor 
microenvironment in patients with PCNSL, although there is a 
rationale for their implementation (156).

iMMUNe CHeCKPOiNT BLOCKADe 
TRiALS

There are now numerous clinical trials testing the efficacy of ICB 
antibodies for tumors arising in the brain including glioma and 
PCNSL. An important issue related to the use of ICB antibod-
ies is the mutation load of the targeted malignancies. GBM do 
not possess a high rate of mutations (around 2.5 mutations per 
megabase2) (157), except for a particular hypermutated rare 
subtype (158), lowering the probability of neoepitope-specific 
immune responses that can be amplified by ICB antibodies. 
Thus, the efficacy of immune checkpoint inhibitors might be 
less impressive as compared to other malignancies, as immune 
checkpoint inhibitors have been shown to work best in highly 
mutated tumors, with a threshold of 100 mutations per exome 
(3.3 mutations per megabase) (40, 41). As a consequence, trials in 
GBM might need to use these molecules not as single agents, but 
rather in combination with other immunotherapeutic strategies. 
Regarding PCNSL, recent studies revealed a median mutation 
load around 6.6 mutations per megabase (159), suggesting that 
this malignancy could be targeted with ICB antibodies as single 
agents. A further issue for the use of ICB antibodies from tumors 
located in the brain is whether efficacy is linked to penetra-
tion of antibodies to the tumor site in the CNS. Since, even in 
the condition where a tumor is present, blood–brain barrier 
breakdown is only partial, access of antibodies to tumors in the 
CNS will definitely be less efficient than for tumors located in 
peripheral organs. Anti-CTLA4, and to some extend anti-PD1, 
might exert their effect while seeing T cells in the periphery. 
Indeed, it has been shown that anti-PD1 treatment affected the 
phenotype of PD1-expressing Tregs in the peripheral blood 

2 http://icgc.org/.
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TABLe 4 | Currently ongoing immune checkpoint trials.

Molecule Additional intervention Patient 
population

Diagnostic Phase estimated 
enrollment

Country NCT number

Anti-CTLA4

Ipilimumab ±Nivolumab Adult Newly diagnosed 
glioblastoma (GBM)

I 42 USA NCT02311920

Ipilimumab Nivolumab Adult Recurrent GBM III 440 Worldwide 
(checkmate 143)

NCT02017717

Anti-PD1

Nivolumab Gamma knife + valproate Adult Recurrent GBM Pilot 17 USA NCT02648633

Nivolumab None and/or ipilimumab Adult Newly diagnosed GBM I 42 USA NCT02311920

Nivolumab CSF1-R inhibitor Adult Solid tumors, GBM I 270 USA NCT02526017

Nivolumab Galunisertib (TGFβ receptor I  
kinase inhibitor)

Adult GBM, other solid tumors I/II 100 USA and Spain NCT02423343

Nivolumab Adult Newly diagnosed GBM  
(Me MGMT)

II randomized 320 Worldwide 
(checkmate 548)

NCT02667587

Nivolumab Adult Newly diagnosed GBM 
(UnMe MGMT)

III 550 Worldwide 
(checkmate 498)

NCT02617589

Nivolumab Pediatric +  
adult

Newly diagnosed and 
recurrent GBM

II 29 Spain NCT02550249

Nivolumab CMV pp65-mRNA-pulsed  
dendritic cells

Adult Recurrent HGG II 66 USA NCT02529072

Pembrolizumab Adult Recurrent HGG with 
hypermutant phenotype

Pilot 12 USA NCT02658279

Pembrolizumab Adult Recurrent HGG I 32 USA NCT02313272

Pembrolizumab Pediatric Recurrent HGG/DPIG I 70 USA NCT02359565

Pembrolizumab Adult Newly diagnosed HGG I/II 50 USA NCT02530502

Pembrolizumab MRI-guided laser ablation Adult Newly diagnosed HGG I/II 52 USA NCT02311582

Pembrolizumab Adult Recurrent GBM II 20 USA NCT02337686

Pembrolizumab Adult Recurrent GBM II 81 USA NCT02337491

Pembrolizumab Adult Recurrent PCNSL II 21 Austria NCT02779101

Pembrolizumab Versus three PI3K/Akt  
pathways inhibitors

Adult Recurrent GBM IIb 58 Worldwide NCT02430363

Pidilizumab Pediatric DPIG I/II 50 Israel NCT01952769

Anti-PD-L1

Durvalumab Bevacizumab Adult Newly diagnosed and 
recurrent GBM

II 108 USA and Australia NCT02336165

Anti-LAG3

Anti-LAG3 Pembrolizumab, urelumab Adult Recurrent GBM I 68 USA NCT02658981

Durvalumab, human IgG1 anti-PD-L1; HGG, high-grade (III and IV) astrocytoma; ipilimumab, humanized IgG1 anti-CTLA4; Me MGMT, methylated MGMT promoter; nivolumab, fully 
human IgG4 anti-PD1; NSCLC, non-small cell lung cancer; PCNSL, primary CNS lymphoma; pembrolizumab, humanized IgG4 anti-PD1; pidilizumab, humanized IgG1 anti-PD1; 
urelumab, fully human IgG4 anti-CD137; UnMe MGMT, unmethylated MGMT promoter.
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of nivolumab-treated GBM patients (NCT02017717) (160). 
Considering anti-PD-L1 antibodies (such as durvalumab cur-
rently being tested in patients with GBM, see below), they will 
certainly need to access the tumor to reach PD-L1-expressing 
tumor cells, but an effect of anti-PD-L1 on circulating myeloid 

cells cannot be excluded. Studies in glioma mouse models have 
demonstrated the efficacy of anti-CTLA4 and anti-PD1 antibod-
ies (161, 162) and studies demonstrating efficacy of anti-PD-L1 
antibodies confirmed interest of these targets but do not provide 
the formal proof than these antibodies are able to enter the brain 
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(144, 163). Brain metastases from melanoma patients can be con-
trolled by ICB antibodies, but with lower efficacy than metastases 
in extracerebral sites (164).

The number of clinical trials for GBM using anti-CTLA4, but 
mostly anti-PD1, has increased remarkably in the last 2 years. 
Indeed, the anti-CTLA4 antibody ipilimumab is being tested in 
combination with anti-PD1 in newly diagnosed (NCT02311920) 
and recurrent GBM patients (NCT02017717, in comparison 
with bevacizumab, Table 4). Rationale for investigating efficacy 
of multiple ICB antibodies originate from clinical studies in 
melanoma demonstrating higher efficacy of combination of 
anti-CTLA4 and anti-PD1 versus anti-CTLA-4 (165, 166) 
or either agent alone in PD-L1-negative patients (166), the 
limiting factor being however increased toxicity as treatments 
are combined. Preclinical studies also showed that only 
combination of ICB antibodies were able to induce regression 
of intracranial glioma (144, 161). Nevertheless, several trials 
using the anti-PD1 antibodies nivolumab (fully human IgG4), 
pembrolizumab (humanized IgG4), or pidilizumab (humanized 
IgG1) are ongoing in the adult and pediatric populations in 
pilot, phase I, II, and III trials. Some trials are investigating 
anti-PD1 antibodies as single agents in newly diagnosed 
(NCT02667587, NCT02617589, NCT02550249, NCT02530502) 
or recurrent (NCT02550249, NCT02313272, NCT02359565, 
NCT02337686, NCT02337491) GBM patients, including 
children (NCT02550249, NCT02359565, NCT01952769). One 
trial is comparing the use of pembrolizumab in comparison 
to three suppressors of the PI3K/Akt pathways given together 
(NCT02430363). Rare hypermutated GBM tumors occurring 
in patients suffering from biallelic mismatch repair deficiency, 
which have been shown to respond to nivolumab treatment 
(158), are being targeted as well (NCT02658279). Two tri-
als are addressing the efficacy of other ICB, the anti-PD-L1 
antibody durvalumab (human IgG1) in patients with newly 
diagnosed or recurrent GBM (NCT02336165) and an anti-
LAG3 antibody compared to an anti-CD137 (urelumab, a fully 
human IgG4 antibody) combined or not with pembrolizumab 
(NCT02658981).

Currently, none of these trials are selecting patients according 
to the PD-L1 status. It has been shown in non-CNS malignan-
cies that response to PD1 targeting was associated with PD-L1 
expression (167–169) and one study demonstrated objective 
responses in patients whose tumors expressed PD-L1 only 
(169). However, in contrast to this, some studies observed 
treatment responses in PD-L1-negative patients, questioning 
the use of PD-L1 expression as a marker for patient selection. 
In that matter, one issue is the various protocols (including 
different antibodies, tumor sample size, cut-offs…) used for the 
assessment of PD-L1 expression that prevents direct comparison 
of studies (170). Regarding GBM, the same issue applies, but, 
regardless of the methodology used, the rate of PD-L1-positive 
tumors seems to be relatively high as compared to non-CNS 
malignancies (171). Expression in PCNSL samples, although 
less intensively assessed thus far, seems to be lower (172, 173). 
A careful assessment of PD-L1 expression in ongoing clinical 
trials of anti-PD1 and PD-L1 will be invaluable in helping define 

the role of PD-L1 expression as a marker of treatment efficacy 
in CNS malignancies.

As mentioned before, the relatively low mutation load of 
GBM might require using ICB antibodies in combination 
with antitumor vaccines or other therapeutic interventions. In 
that regard, other studies are combining anti-PD1 antibodies 
with (i) approaches to enhance tumor immunogenicity, (ii) 
therapeutic vaccines, or (iii) molecules targeting the tumor 
microenvironment. Enhancement of tumor immunogenicity is 
achieved through the concomitant use of gamma knife surgery 
to provide additional tumor antigens to the immune system 
and valproic acid, a histone deacetylase inhibitor shown to 
induce global DNA demethylation (NCT02648633). Others 
are using peritumoral MRI-guided laser ablation in order to 
breach the BBB and increase access of tumor antigens to the 
immune system (NCT02311582). At the moment, only one 
trial combining ICB antibodies with another immunotherapy 
is ongoing, using autologous DCs pulsed with pp65 CMV 
mRNA (NCT02529072). As mentioned above, elicitation of 
antitumor immune responses that reach the tumor is associ-
ated with adaptive immune resistance as tumor infiltration by 
IFN-γ-secreting cells lead to upregulation to PD-L1 in the tumor 
environment (37), a phenomenon that could be counteracted 
in a glioma mouse model of tumor-loaded DC vaccination by 
the concomitant use of anti-PD1 antibodies (162). Therefore, 
combining DC and other vaccines with ICB antibodies certainly 
merits further exploration. As already mentioned above, two 
trials are using ICB in the context of strategies aiming at tar-
geting the tumor microenvironment, namely using a CSF1-R 
inhibitor (NCT02526017) or a TGFβ receptor I kinase inhibi-
tor (NCT02423343). Regarding PCNSL, one trial is currently 
addressing the effect of anti-PD1 antibodies in recurrent PCNSL 
(NCT02779101).

CONCLUSiON

Currently, ongoing trials for tumors located in the brain are 
principally designed on the same basis as for tumors located at 
other sites. Similarities between CNS and non-CNS tumors are 
the need for specificity, the need for T cell infiltration in the case 
of non-T cell inflamed organs, and the need to overcome local 
immunosuppression. The only feature that is unique to tumors 
located in the brain is the absence of metastases outside the CNS. 
This is an opportunity, as, if we can design immunotherapies that 
are efficient in getting functional antitumor T cell in the CNS, 
no other site needs to be targeted. Once we achieve this, the 
difference for tumors located in the brain will be determining 
the tolerated level for an inflammatory response to occur without 
damage to the brain. Integration of these parameters into future 
clinical trials will ultimately result in clinical benefit for the 
patient. In the interim, maximizing the biological information 
from existing trials may be highly informative. Finally, a notion 
that is also true for tumors located outside the brain, we should 
aim at investigating combination of vaccines, cell therapy, ICB 
antibodies, and molecules targeting the tumor environment, 
trying as well to exploit the beneficial effects of radio- and 
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